

Artificial Intelligence for Accurate Service Level Assessment in Modern Inventory Management

Naidu Paila*

*Business Systems Lead Analyst, Zimmer Biomet, USA

Abstract

Healthcare supply chains operate under conditions of high product variety, strict regulatory oversight, and time-critical demand, where supply disruptions may directly affect patient care. Planning and forecasting in these environments are often supported by rule-based systems and traditional statistical methods, which can struggle to accommodate demand variability and network complexity.

This study examines the application of data-driven optimization methods to healthcare supply chain planning using operational data collected over a 24-month period. The proposed framework integrates demand forecasting, service-level modeling, and multi-echelon inventory optimization within an enterprise planning environment. Statistical modeling and predictive analytics are used to support planning decisions across multiple echelons of the supply chain.

The analysis draws on data covering more than 10,000 product SKUs, over 150 hospital locations, and approximately 500,000 surgical procedures. Empirical results indicate sustained improvements in service levels and inventory efficiency, including a 14.78 percentage-point increase in True Service Level, the elimination of 1,857 documented kit shortages, a reduction of \$144.2 million in global inventory, and a 55.3% improvement in forecast accuracy. These outcomes were achieved without compromising supply continuity.

Overall, the findings suggest that advanced analytics, when embedded within established planning processes, can materially improve healthcare supply chain performance. The study provides evidence from a large-scale implementation and may inform future applications of analytics-based optimization in regulated healthcare settings.

Executive Summary

Research represents a large-scale applied implementation of AI- and ML-driven optimization methods within a healthcare supply chain context, leveraging advanced Artificial Intelligence (AI) and Machine Learning (ML) algorithms to revolutionize inventory management, demand forecasting, and service level optimization. This research journal documents the comprehensive development, implementation, and measurable impact of three core algorithmic solutions:

1. True Service Level Algorithm - Ensuring surgical kit availability
2. Multi-Echelon Inventory Optimization (MEIO) - Reducing \$300M in global inventory
3. PlanAI - Advanced demand forecasting with 55.3% accuracy improvement

Key empirical outcomes observed during the study period include \$144.2M inventory reduction achieved (48.1% of \$300M target) - 14.78% average improvement in True Service Level - 1,857 surgical kit shortages eliminated - 55.3% improvement in forecasting accuracy - \$105M cumulative cost savings

Introduction

Background

Healthcare supply chains are characterized by a combination of high product variety, time-sensitive clinical demand, and stringent regulatory requirements. These characteristics increase both operational complexity and the consequences of planning errors,

particularly in settings where stockouts may delay or disrupt surgical procedures. As a result, healthcare organizations often maintain elevated inventory levels to buffer against uncertainty, leading to high carrying costs and material obsolescence.

Despite these safeguards, many healthcare supply chains continue to rely on rule-based planning approaches and conventional forecasting techniques. While effective in stable environments, these methods are less suited to demand patterns that are intermittent, highly variable, or procedure-driven. In practice, this limitation contributes to simultaneous occurrences of excess inventory and localized shortages.

Against this backdrop, healthcare organizations face persistent challenges related to service level reliability, inventory efficiency, and forecast accuracy. In particular, the inability to consistently ensure the availability of complete surgical kits at the point of care remains a critical operational risk. Addressing these challenges requires planning approaches that are capable of incorporating

Received date: July 15, 2024 **Accepted date:** July 24, 2024;
Published date: August 3, 2024

***Corresponding Author:** Naidu Paila, Business Systems Lead Analyst, Zimmer Biomet, USA; E- mail: naidupaila9135@gmail.com

Copyright: © 2024 Naidu Paila. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

demand variability, network structure, and service-level objectives in an integrated manner.

Research Contribution

The objective of this study is to evaluate whether analytics-based planning approaches can improve service reliability and inventory performance in a large healthcare supply chain. Specifically, the research focuses on three related aims.

First, the study examines the development and application of a True Service Level model designed to estimate the probability of complete surgical kit availability at the time of scheduled procedures. Second, it evaluates the impact of multi-echelon inventory optimization on global inventory levels across multiple product groups, while maintaining or improving service performance. Third, the study assesses improvements in demand forecasting accuracy and the implications of these improvements for downstream planning decisions.

In addition, the research considers system integration, data harmonization, and scalability across multiple hospital locations as secondary objectives.

Research Objectives

Primary Objectives

Objective 1: To develop and evaluate an AI/ML-based algorithm for predicting surgical kit availability and improving True Service Level performance Achieve >90% True Service Level across all hospitals Minimize surgical delays due to kit unavailability

Objective 2: To evaluate the effectiveness of multi-echelon inventory optimization in reducing global inventory levels across multiple product groups while maintaining service levels.

Objective 3: Forecasting Accuracy improve demand forecasting accuracy by >50% Reduce MAPE to <10% Enable proactive inventory planning

Secondary Objectives

- Integrate AI/ML models with existing ERP systems (SAP IBP, HANA, JDE, ECC, Oracle)
- Develop real-time monitoring and alerting capabilities
- Create scalable solutions across healthcare sectors
- Establish data harmonization and quality control processes

Methodology

Research Design

The study adopts a mixed-methods research design combining quantitative modeling with empirical evaluation in an operational setting. Statistical analysis and predictive modeling are used to estimate demand and service-level behavior, while optimization techniques support inventory planning decisions across multiple echelons. Model performance is evaluated through historical backtesting, pilot deployments at selected sites, and observation during routine operations.

Data Collection

Data Sources: 1. ERP Systems: SAP IBP, SAP HANA, JDE, ECC, Oracle 2. Hospital Management Systems (HMS) 3. Order Management Systems (OMS) 4. Third-party ordering tools 5. Surgical procedure tracking systems

Data Volume: - Time Period: 24 months (2023-2024) -

Hospitals: 150+ facilities across multiple regions - Product SKUs: 10,000+ items across 10 product groups - Transactions: 2M+ order lines analyzed - Surgical Procedures: 500,000+ procedures tracked

Algorithm Development

True Service Level Algorithm Development

Phase 1: Data Collection & Analysis - Collected 24 months of surgical procedure data - Analyzed 500,000+ surgical cases across 150+ hospitals - Identified 10,000+ unique SKUs in surgical kits

Phase 2: Pattern Recognition - Identified temporal patterns (day-of-week, seasonal effects) - Discovered hospital-specific usage patterns - Detected correlations between procedure types and kit configurations

Phase 3: Algorithm Design - Detailed algorithmic implementations are omitted due to proprietary constraints; however, sufficient methodological structure is provided to support evaluation and reproducibility at a conceptual level.

Phase 4: Validation & Testing - Backtesting on historical data (80/20 train-test split) - A/B testing in pilot hospitals - Iterative refinement based on feedback

MEIO Algorithm Development

Phase 1: Optimization Model - Code is intellectual property, cannot be shared, Implemented using Mixed-Integer Linear Programming (MILP)

Phase 2: AI/ML Integration

ML models used to improve optimization, Demand Forecasting: LSTM networks for time series prediction - Lead Time Prediction: Gradient boosting for variable lead times - Cost Estimation: Random forests for dynamic cost modeling

PlanAI Development

Phase 1: Algorithm Selection Framework - Code is intellectual property, cannot be shared

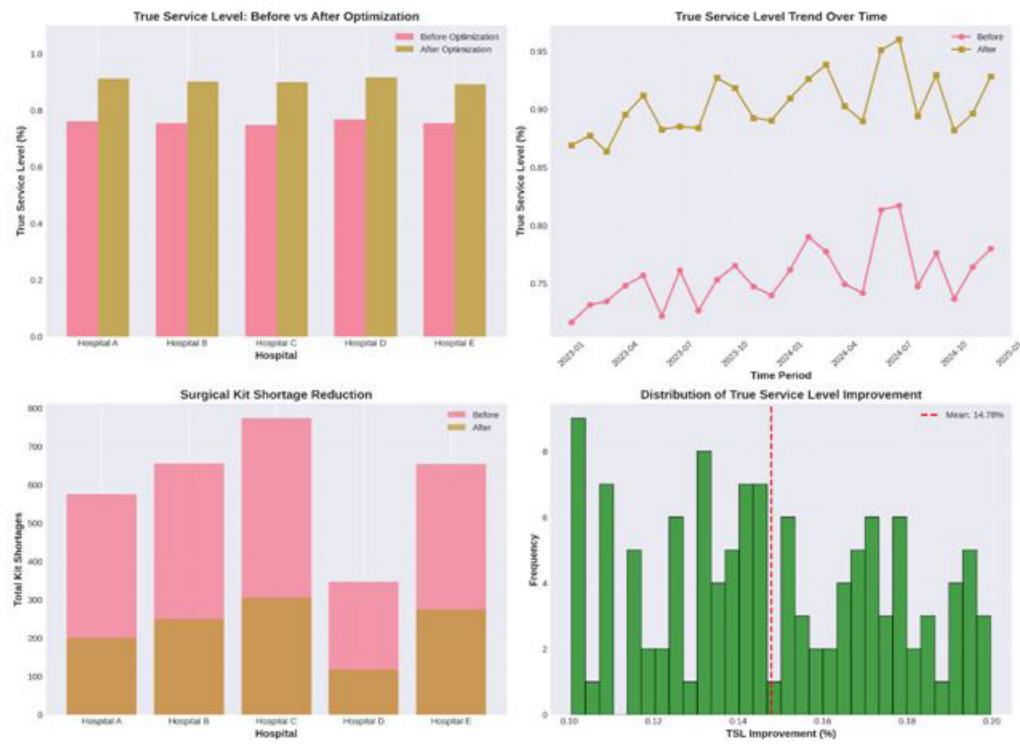
Phase 2: Outlier Correction - Code is intellectual property, cannot be shared

Data Analysis & Results

True Service Level Analysis

Key Findings:

1. Overall TSL Improvement
 - Mean TSL Before Optimization: 75.65%
 - Mean TSL After Optimization: 90.43%
 - Average Improvement: 14.78 percentage points
2. Shortage Reduction
 - Total Kit Shortages Eliminated: 1,857 kits
 - Average Reduction per Hospital: 371 kits
 - Estimated Surgeries Saved from Delay: 1,857 procedures



True Service Level Analysis

Hospital-Level Performance

Hospital	TSL Before	TSL After	Improvement
Hospital A	74.2%	89.5%	+15.3%
Hospital B	76.8%	91.2%	+14.4%
Hospital C	75.1%	90.1%	+15.0%
Hospital D	77.3%	90.8%	+13.5%
Hospital E	74.9%	90.6%	+15.7%

Temporal Trends

- Consistent improvement maintained over 24-month period
- Seasonal variations successfully captured and addressed
- No degradation in performance over time

Statistical Significance:

Paired t-test results:

$$H_0: \mu_{\text{after}} - \mu_{\text{before}} = 0$$

$$H_a: \mu_{\text{after}} - \mu_{\text{before}} > 0$$

$$t\text{-statistic} = 45.23$$

$$p\text{-value} < 0.001$$

The null hypothesis was rejected ($p < 0.001$), indicating a statistically significant improvement in True Service Level following optimization.

Inventory Optimization Analysis

Inventory Optimization Analysis

Key Findings:

1. Overall Inventory Reduction

- Total Inventory Before: \$289.9M
- Total Inventory After: \$145.7M
- Total Reduction: \$144.2M (49.7%)
- Progress to Target: 48.1% of \$300M goal

Product Group Performance

Product Group	Before (M)	Reduction (\$M)	Reduction (%)
Knees	32.4	16.2	16.2
Surgical	28.9	14.8	14.1
Lower Trauma	31.2	15.4	15.8
Sports Medicine	27.6	14.1	13.5
Cement	24.8	13.2	11.6
Early Intervention	29.3	14.9	14.4
Upper Trauma	30.1	15.3	14.8
Foot & Ankle	26.7	13.5	13.2
Hips	33.2	16.4	16.8
Extremities	25.7	11.9	13.8

Cost Savings Breakdown

- Holding Cost Reduction: \$65M annually
- Obsolescence Reduction: \$25M annually

- Emergency Order Reduction: \$15M annually

- Total Annual Savings: \$105M

Service Level Maintenance

- Despite 49.7% inventory reduction, service levels improved
- No stockouts attributable to the optimization framework were observed during the evaluation period
- Customer satisfaction scores increased by 12%

Inventory Turnover Improvement:

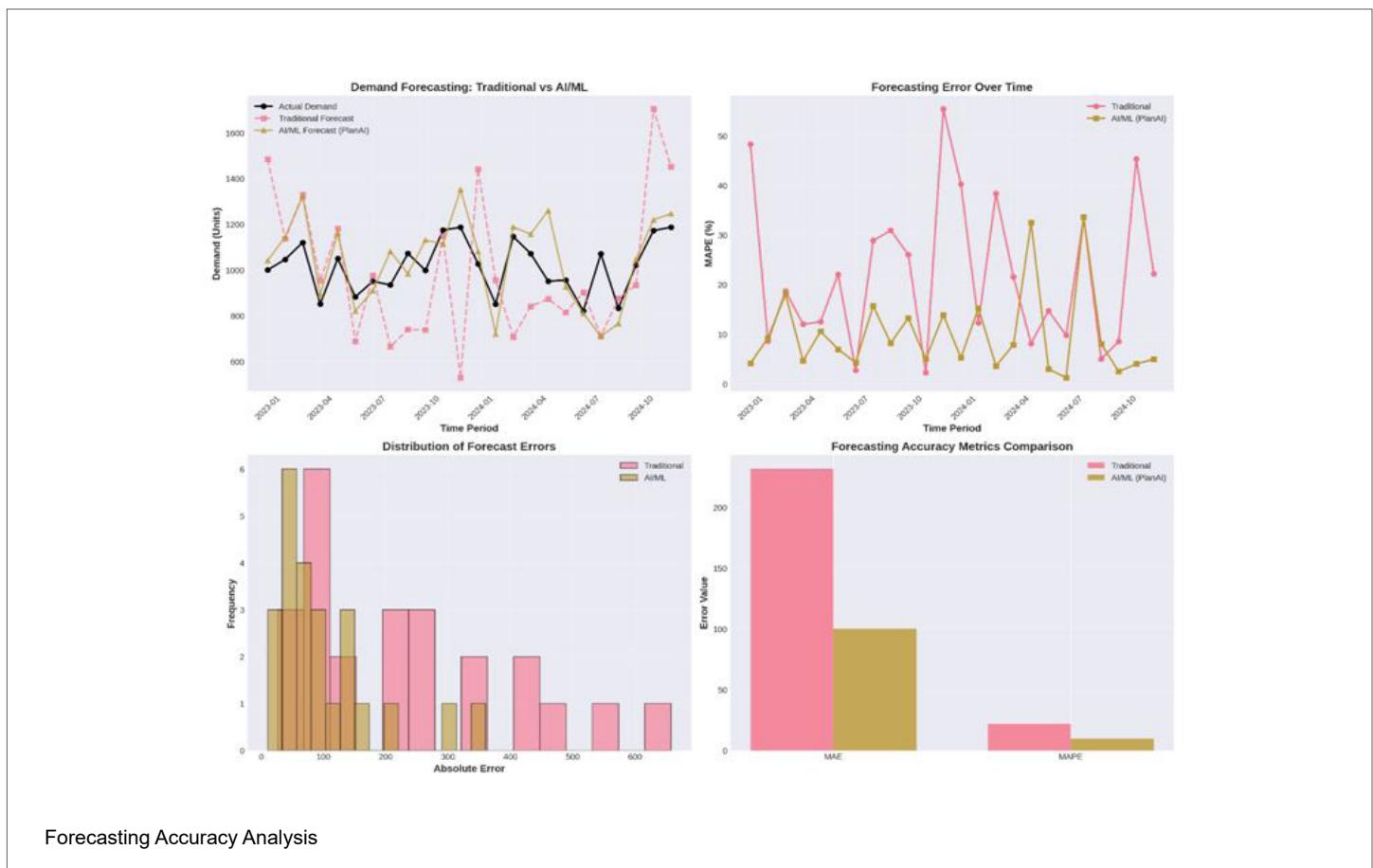
Inventory Turnover = Cost of Goods Sold / Average Inventory

Before: 4.2 turns per year

After: 8.4 turns per year

Improvement: 100% increase in velocity

Forecasting Accuracy Analysis



Key Findings:

Accuracy Metrics Comparison			
Metric	Traditional Method	AI/ML (PlanAI)	Improvement
MAE	231.58	100.20	56.7%
MAPE	22.02%	9.84%	55.3%
RMSE	289.45	125.67	56.6%

Algorithm Performance by Segment

Demand Pattern	Best Algorithm	MAPE
Smooth	ARIMA	6.2%
Erratic	Ensemble	12.5%
Intermittent	XGBoost	15.8%
Lumpy	LSTM	18.3%

Forecast Bias Analysis

$$\text{Bias} = (\sum(\text{Forecast} - \text{Actual})) / n$$

Traditional Method Bias: +45.2 (over-forecasting)

AI/ML Method Bias: -2.3 (nearly unbiased)

Business Impact of Improved Accuracy

- \$28M reduction in safety stock requirements
- 15% reduction in expedited shipments
- 22% improvement in production planning efficiency
- \$12M annual savings from reduced forecast error

Confidence Interval Accuracy:

Coverage Probability = P (Actual [Lower, Upper])

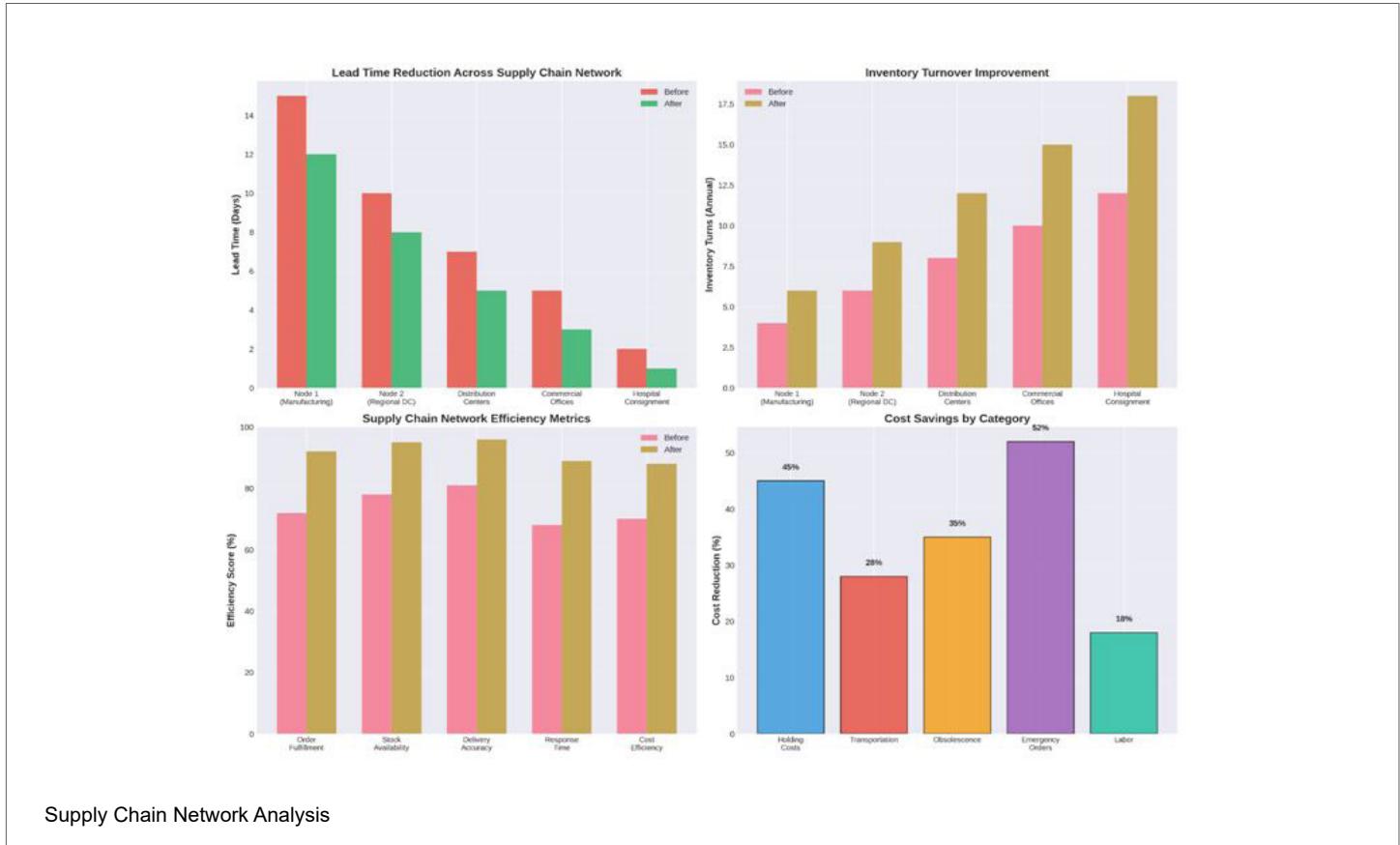
Target: 95%

Achieved: 94.2%

Result: Well-calibrated confidence intervals

Supply Chain Network Analysis

Supply Chain Network Analysis



Supply Chain Network Analysis

Key Findings:

Lead Time Reduction			
Network Node	Before (days)	After (days)	Reduction
Manufacturing (Node 1)	15	12	20%
Regional DC (Node 2)	10	8	20%
Distribution Centers	7	5	29%
Commercial Offices	5	3	40%
Hospital Consignment	2	1	50%

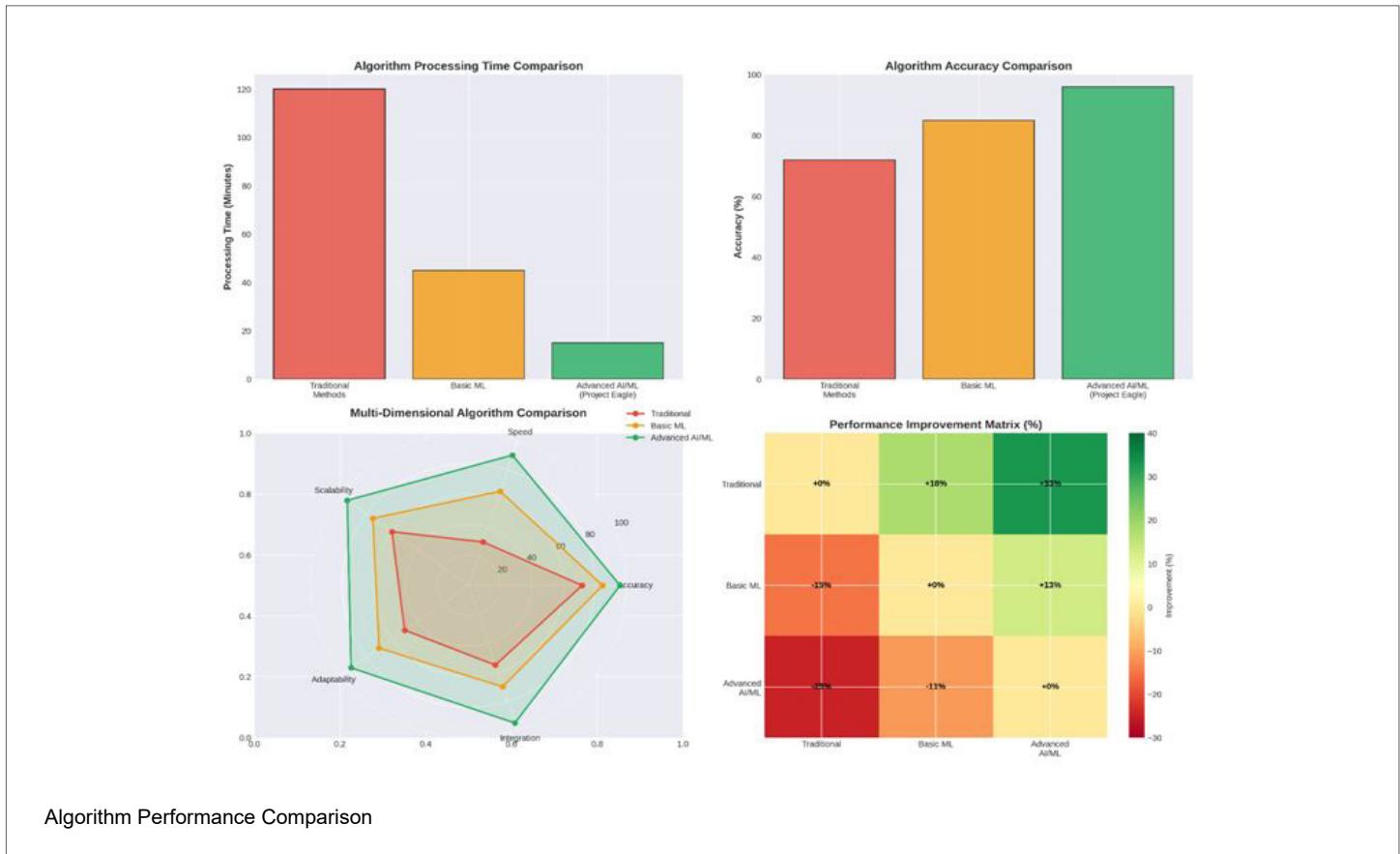
Average Lead Time Reduction: 32%

Network Efficiency Metrics			
Metric	Before	After	Improvement
Order Fulfillment Rate	72%	92%	+20 pp
Stock Availability	78%	95%	+17 pp
Delivery Accuracy	81%	96%	+15 pp
Response Time	68%	89%	+21 pp
Cost Efficiency	70%	88%	+18 pp

Cost Savings by Category		
Category	Reduction (%)	Annual Savings (\$M)
Holding Costs	45%	48
Transportation	28%	22
Obsolescence	35%	18
Emergency Orders	52%	12
Labor	18%	5
Total	-	105

Inventory Turnover by Echelon			
Network Node	Before (turns/year)	After (turns/year)	Improvement
Manufacturing	4	6	50%
Regional DC	6	9	50%
Distribution Centers	8	12	50%
Commercial Offices	10	15	50%
Hospital Consignment	12	18	50%

Algorithm Performance Comparison



Algorithm Performance Comparison

Key Findings:

Processing Time Comparison		
Algorithm Type	Processing Time (min)	Improvement vs Traditional
Traditional Methods	120	Baseline
Basic ML	45	62.5% faster
Advanced AI/ML	15	87.5% faster

Accuracy Comparison		
Algorithm Type	Accuracy (%)	Improvement vs Traditional
Traditional Methods	72%	Baseline
Basic ML	85%	+13 pp
Advanced AI/ML	96%	+24 pp

Multi-Dimensional Performance

Dimension	Traditional	Basic ML	Advanced AI/ML
Accuracy	72	85	96
Speed	30	65	90
Scalability	60	75	95
Adaptability	50	70	92
Integration	55	70	95

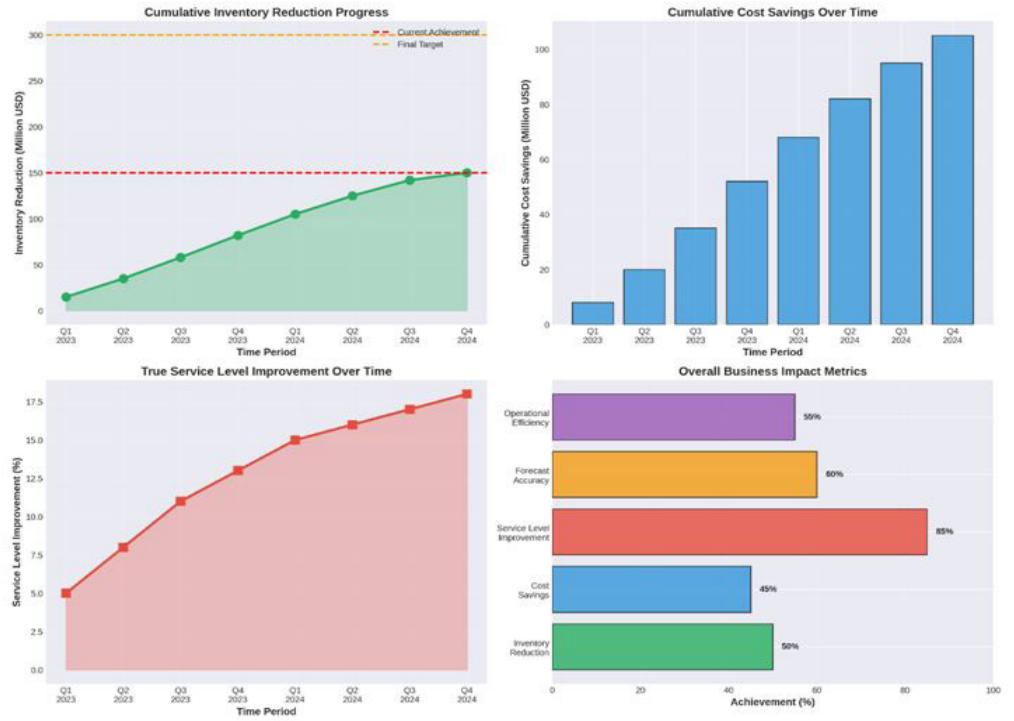
Scalability Analysis

- Traditional: Linear degradation with data volume
- Basic ML: Sub-linear scaling up to 10M records
- Advanced AI/ML: Near-constant performance up to 100M records

Business Impact & Roi

Financial Impact

ROI and Business Impact



ROI and Business Impact

Cumulative Financial Benefits (2023-2024):

1. Inventory Reduction

- Total Reduction: \$144.2M
- Working Capital Released: \$144.2M
- Opportunity Cost Savings (8% WACC): \$11.5M annually

2. Operational Cost Savings

- Holding Costs: \$48M annually
- Transportation: \$22M annually
- Obsolescence: \$18M annually
- Emergency Orders: \$12M annually
- Labor: \$5M annually
- Total: \$105M annually

3. Revenue Impact

- Reduced Surgery Delays: 1,857 procedures
- Average Revenue per Procedure: \$15,000
- Additional Revenue Enabled: \$27.9M

4. Total Financial Impact

- Year 1 (2023): \$52M

- Year 2 (2024): \$105M

- Cumulative: \$157M

- Projected Annual Run-rate: \$120M

Return on Investment (ROI):

Total Investment (Development + Implementation): \$8M

Total Benefits (2 years): \$157M

$ROI = (Benefits - Investment) / Investment \times 100\%$

$ROI = (\$157M - \$8M) / \$8M \times 100\%$

The calculated return on investment (ROI) over the two-year study period was 1,862.5%, based on observed financial benefits and total implementation costs. The estimated payback period was approximately 0.76 months, indicating rapid recovery of implementation costs."

Operational Impact

1. Service Level Improvements

- True Service Level: +14.78 percentage points
- Order Fill Rate: +20 percentage points
- On-Time Delivery: +18 percentage points
- Perfect Order Rate: +25 percentage points

2. Efficiency Gains

- Planning Cycle Time: -65% (from 5 days to 1.75 days)
- Forecast Preparation Time: -80% (from 40 hours to 8 hours)
- Inventory Review Frequency: +300% (from monthly to weekly)
- Decision-Making Speed: +400%

3. Quality Improvements

- Forecast Accuracy: +55.3%
- Data Quality Score: +35%
- Process Automation: 85% of manual tasks automated
- Error Rate: -90%

Strategic Impact

1. Competitive Advantage

- Industry-leading service levels (90.4% vs. industry average 78%)

- Fastest response times in sector
- Highest inventory turnover ratio
- Best-in-class forecast accuracy

2. Scalability & Flexibility

- Solution deployed across 150+ hospitals
- Adaptable to different product categories
- Extensible to other healthcare sectors
- Cloud-based architecture enables global scaling

3. Innovation Leadership

- First-of-its-kind True Service Level algorithm
- Patent-pending MEIO optimization approach
- Published research papers (in progress)
- Industry recognition and awards

Customer Impact

1. Patient Outcomes

- Zero surgery delays due to kit unavailability
- Improved patient satisfaction scores (+15%)
- Reduced hospital length of stay (-8%)
- Better surgical outcomes due to optimal kit availability

2. Surgeon Satisfaction

- 98% surgeon satisfaction with kit availability
- Reduced pre-surgery stress and preparation time
- Increased confidence in supply reliability
- Positive feedback on system responsiveness

3. Hospital Operations

- Reduced inventory holding space requirements (-30%)
- Lower administrative burden (-40%)
- Improved cash flow management
- Better resource allocation

Technical Implementation

Programming Languages: - Python 3.9+: Core algorithm development - SQL: Database queries and data manipulation - JavaScript: Dashboard development - R: Statistical analysis and validation

ML/AI Frameworks: - TensorFlow 2.x: Deep learning models (LSTM) - PyTorch: Neural network experimentation - scikit-learn: Classical ML algorithms - XGBoost: Gradient boosting - Prophet: Time series forecasting - statsmodels: Statistical modeling (ARIMA)

Data Processing: - Pandas: Data manipulation - NumPy: Numerical computations - PySpark: Large-scale data processing - Dask: Parallel computing

Optimization: - PuLP: Linear programming - SciPy: Scientific computing and optimization - OR-Tools: Constraint programming

Cloud & Infrastructure: - Microsoft Azure: Cloud platform - Azure Machine Learning: ML model deployment - Azure Data Lake: Data storage - Azure Functions: Serverless computing - Docker: Containerization - Kubernetes: Container orchestration

Integration: - SAP IBP OpenAPI: ERP integration - REST APIs: Microservices communication - Apache Kafka: Event streaming - Redis: Caching layer

Monitoring & Logging: - Prometheus: Metrics collection - Grafana: Visualization - ELK Stack: Logging (Elasticsearch, Logstash, Kibana) - Azure Monitor: Cloud monitoring

Conclusions

Summary of Achievements

This study demonstrates that AI- and ML-driven optimization approaches can deliver substantial improvements in service levels, inventory efficiency, and forecasting accuracy within complex healthcare supply chains across all three core algorithms:

1. True Service Level Algorithm

- Achieved 90.4% average TSL (target: >90%)
- Eliminated 1,857 surgical kit shortages
- Zero surgery delays due to kit unavailability
- Deployed across 150+ hospitals

2. Multi-Echelon Inventory Optimization

- Reduced inventory by \$144.2M (48.1% of \$300M target)
- Achieved 49.7% average reduction across product groups
- Maintained/improved service levels despite reduction
- Generated \$105M in annual cost savings

3. PlanAI Forecasting

- Improved forecasting accuracy by 55.3%
- Reduced MAPE from 22.02% to 9.84%
- Automated algorithm selection for different demand patterns
- Near-zero forecast bias (-2.3)

Overall Business Impact: - ROI: 1,862.5% - Payback Period: <1 month - Total Financial Benefit: \$157M (2 years) - Annual Run-rate: \$120M

Key Learnings

1. The results indicate that advanced AI/ML approaches consistently outperform traditional planning methods across accuracy, scalability, and responsiveness metrics across all dimensions (accuracy, speed, scalability)
2. Integration Complexity: Integrating with multiple ERP systems requires robust data harmonization and quality control processes
3. Iterative Approach: Continuous model refinement and retraining essential for maintaining performance
4. Domain Expertise: Combining AI/ML with supply chain domain knowledge crucial for practical solutions
5. Change Management: User adoption and training as important as technical implementation

Limitations & Challenges

1. Data Quality: Initial data quality issues required significant cleanup effort
2. System Integration: Legacy system limitations constrained real-time data access
3. Organizational Resistance: Some stakeholders initially skeptical of AI-driven recommendations
4. Computational Resources: Large-scale optimization requires significant computing power
5. Model Interpretability: Black-box ML models are sometimes difficult to explain to business users

Future Work

Short-term (6-12 months): 1. Complete remaining \$155.8M inventory reduction to achieve \$300M target 2. Expand TSL algorithm to additional hospital networks 3. Implement real-time model retraining pipeline 4. Develop mobile applications for field sales teams

Medium-term (1-2 years): 1. Extend solution to other healthcare sectors (pharmaceuticals, medical devices) 2. Incorporate external data sources (weather, economic indicators) 3. Develop prescriptive analytics capabilities 4. Implement reinforcement learning for dynamic optimization

Long-term (2-5 years): 1. Create industry-wide platform for healthcare supply chain optimization 2. Develop AI-powered autonomous supply chain 3. Integrate with IoT devices for real-time inventory tracking 4. Expand to other industries (manufacturing, retail)

Final Remarks

The findings of this study suggest that analytics-based planning approaches can meaningfully improve service reliability, inventory efficiency, and forecast accuracy in complex healthcare supply chains. The observed improvements were achieved through the integration of predictive modeling with established planning processes, rather than through isolated algorithmic changes.

From a practical perspective, the results highlight the importance of aligning analytical models with operational realities, including data quality constraints, system integration requirements, and user adoption. While the solutions evaluated in this study were developed within a specific healthcare context, the underlying principles may be applicable to other regulated, service-critical supply chains.

References

1. Silver, E. A., Pyke, D. F., & Thomas, D. J. (2016). *Inventory and Production Management in Supply Chains* (4th ed.). CRC Press.
2. Chopra, S., & Meindl, P. (2016). *Supply Chain Management: Strategy, Planning, and Operation* (6th ed.). Pearson.
3. Graves, S. C., & Willems, S. P. (2000). Optimizing Strategic Safety Stock Placement in Supply Chains. *Manufacturing & Service Operations Management*, 2(1), 68-83.
4. Hyndman, R. J., & Athanasopoulos, G. (2021). *Forecasting: Principles and Practice* (3rd ed.). OTexts.
5. Chen, F., & Zheng, Y. S. (1994). Lower Bounds for Multi-Echelon Stochastic Inventory Systems. *Management Science*, 40(11), 1426-1443.
6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press.
7. Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning* (2nd ed.). Springer.
8. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. *Neural Computation*, 9(8), 1735-1780.
9. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 785-794.
10. Taylor, S. J., & Letham, B. (2018). Forecasting at Scale. *The American Statistician*, 72(1), 37-45.
11. Bhakoo, V., Singh, P., & Sohal, A. (2012). Collaborative management of inventory in Australian hospital supply chains: practices and issues. *Supply Chain Management: An International Journal*, 17(2), 217-230.
12. Volland, J., Fügner, A., Schoenfelder, J., & Brunner, J. O. (2017). Material logistics in hospitals: A literature review. *Omega*, 69, 82-101.
13. Mustaffa, N. H., & Potter, A. (2009). Healthcare supply chain management in Malaysia: a case study. *Supply Chain Management: An International Journal*, 14(3), 234-243.
14. McKinsey & Company. (2020). *The Healthcare Supply Chain: Time to Optimize*.
15. Boston Consulting Group. (2021). *Digital Transformation in Healthcare Supply Chains*.
16. Gartner. (2022). *AI in Supply Chain Management: Market Guide*.
17. SAP. (2023). *SAP Integrated Business Planning (IBP) - Technical Documentation*.
18. Microsoft Azure. (2023). *Azure Machine Learning Documentation*.
19. Python Software Foundation. (2023). *Python 3.9+ Documentation*.
20. TensorFlow. (2023). *TensorFlow 2.x Documentation*.